
Document généré le 17/09/2025 depuis l'adresse: https://www.documentation.eauetbiodiversite.fr/fr/notice/som-clustering-of-21-year-data-of-a-small-pristine-boreal-lake
Titre alternatif
Producteur
Contributeur(s)
EDP Sciences
Identifiant documentaire
11-dkey/10.1051/kmae/2017027
Identifiant OAI
oai:edpsciences.org:dkey/10.1051/kmae/2017027
Auteur(s):
Ari Voutilainen,Lauri Arvola
Mots clés
boreal lake
data partitioning
ecological complexity
long-term data
self-organizing map
lac boréal
partitionnement de données
complexité écologique
données à long terme
carte auto-organisatrice
Date de publication
21/08/2017
Date de création
Date de modification
Date d'acceptation du document
Date de dépôt légal
Langue
en
Thème
Type de ressource
Source
https://doi.org/10.1051/kmae/2017027
Droits de réutilisation
Région
Département
Commune
Description
In order to improve our understanding of the connections between the biological processes and abiotic factors, we clustered complex long-term ecological data with the self-organizing map (SOM) technique. The available 21-year long (1990–2010) data set from a small pristine humic lake, in southern Finland, consisted of 27 meteorological, physical, chemical, and biological variables. The SOM grouped the data into three categories of which the first one was the largest with 12 variables, including metabolic processes, dissolved oxygen, total nitrogen and phosphorus, chlorophyll a, and taxonomical groups of plankton known to exist in spring. The second cluster comprised of water temperature and precipitation together with cyanobacteria, algae, rotifers, and crustacean zooplankton, an association emphasized with summer. The third cluster was consisted of six physical and chemical variables linked to autumn, and to the effects of inflow and/or water column mixing. SOM is a useful method for grouping the variables of such a large multi-dimensional data set, especially, when the purpose is to draw comprehensive conclusions rather than to search for associations across sporadic variables. Sampling should minimize the number of missing values. Even flexible statistical techniques, such as SOM, are vulnerable to biased results due to incomplete data.
Accès aux documents
0
Consultations
0
Téléchargements