SOM clustering of 21-year data of a small pristine boreal lake

Titre alternatif
Producteur
Contributeur(s) EDP Sciences
Identifiant documentaire 11-dkey/10.1051/kmae/2017027
Identifiant OAI oai:edpsciences.org:dkey/10.1051/kmae/2017027
Notice source
Auteur(s): Ari Voutilainen,Lauri Arvola
Mots clés boreal lake data partitioning ecological complexity long-term data self-organizing map lac boréal partitionnement de données complexité écologique données à long terme carte auto-organisatrice
Date de publication 21/08/2017
Date de création
Date de modification
Date d'acceptation du document
Date de dépôt légal
Langue en
Thème
Type de ressource
Source https://doi.org/10.1051/kmae/2017027
Droits de réutilisation

Région

Département

Commune

Description
In order to improve our understanding of the connections between the biological processes and abiotic factors, we clustered complex long-term ecological data with the self-organizing map (SOM) technique. The available 21-year long (1990–2010) data set from a small pristine humic lake, in southern Finland, consisted of 27 meteorological, physical, chemical, and biological variables. The SOM grouped the data into three categories of which the first one was the largest with 12 variables, including metabolic processes, dissolved oxygen, total nitrogen and phosphorus, chlorophyll a, and taxonomical groups of plankton known to exist in spring. The second cluster comprised of water temperature and precipitation together with cyanobacteria, algae, rotifers, and crustacean zooplankton, an association emphasized with summer. The third cluster was consisted of six physical and chemical variables linked to autumn, and to the effects of inflow and/or water column mixing. SOM is a useful method for grouping the variables of such a large multi-dimensional data set, especially, when the purpose is to draw comprehensive conclusions rather than to search for associations across sporadic variables. Sampling should minimize the number of missing values. Even flexible statistical techniques, such as SOM, are vulnerable to biased results due to incomplete data.

0

Consultations

0

Téléchargements