 
            Document généré le 31/10/2025 depuis l'adresse: https://www.documentation.eauetbiodiversite.fr/fr/notice/modeles-autoregressifs-a-changements-de-regimes-markoviens-applications-aux-series-tempo-relles-de-vent
Modèles autorégressifs à changements de régimes markoviens. Applications aux séries tempo-relles de vent
                        Titre alternatif
                        
                    
                    
                        Producteur
                        
                    
                    
                        Contributeur(s)
                        Université de Rennes 1
                    
                    
                        Identifiant documentaire
                        9-325
                    
                    
                        Identifiant OAI
                        oai:archimer.ifremer.fr:325
                    
                    
                    
                        Auteur(s):
                        Ailliot, Pierre
                    
                    
                        Mots clés
                                                    Space time model
                                                    Wind time series
                                                    Asymptotic properties
                                                    Maximum likelihood estimator
                                                    Stability
                                                    Markov Switching autoregressive model
                                                    Modèle spatio temporel
                                                    Séries temporelles de vent
                                                    Propriétés asymptotiques
                                                    Estimateurs du maximum de vraisemblance
                                                    Stabilité
                                                    Modèles autorégressifs à changements de régimes markoviens
                                            
                    
                        Date de publication
                        15/11/2004
                    
                    
                        Date de création
                                            
                    
                        Date de modification
                                            
                    
                        Date d'acceptation du document
                                            
                    
                        Date de dépôt légal
                                            
                    
                        Langue
                                                    fre
                                            
                    
                        Thème
                        
                    
                    
                        Type de ressource
                        
                    
                    
                        Source
                        
                    
                    
                        Droits de réutilisation
                        info:eu-repo/semantics/openAccess
                    
                    Région
Département
Commune
                Description
            
            In this thesis, several original Markov switching autoregressive model are proposed for wind time series. The first chapter is devoted to a theoretical study of these models. We focus mainly on the problems of the numerical calculation of the maximum likelihood estimators, of the asymp-totic behavior of these estimators and finally of model selection and validation. In the second chapter, we propose various Markov switching autoregressive model to describe the evolution of the wind in a fixed point, and then in the third chapter its space-time evolution. For each suggested model, we check the physical interpretability of the various parameters, and their capacity to simulate realistic artificial sequences. The obtained results are compared to those corresponding to the models which are usually used in the literature.
        
            Accès aux documents
                            
                                    
                                            
                                    
        0
Consultations
0
Téléchargements
 
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                         
                        